Python | 可视化 | big data | mining – Python (Data Visualization)

Python (Data Visualization)

Python | 可视化 | big data | mining – 这是一个关于Python的题目, 主要考察了关于Python的内容,是一个比较经典的可视化题目, 是有一定代表意义的可视化等代写方向

python代写 代写python

  1. Data Import

We can import the Iris dataset from the Python package scikit-learn.

Detailed information about scikit-learn can be found at scikit-learn.org.

from sklearn import datasets iris = datasets.load_iris()

What does the Iris dataset look like? iris.feature_names Result: [‘sepal length (cm)’, ‘sepal width (cm)’, ‘petal length (cm)’, ‘petal width (cm)’]

To display the names of the target classes: iris.target_names Result: array([‘setosa’, ‘versicolor’, ‘virginica’], dtype='<U10′)

To display the attribute values of the records: iris.data Result: array([ 5.1, 3.5, 1.4, 0.2], [ 4.9, 3. , 1.4, 0.2], [ 4.7, 3.2, 1.3, 0.2], [ 4.6, 3.1, 1.5, 0.2], [ 5. , 3.6, 1.4, 0.2] …… )

To display the target outputs of the records: iris.target Result: array ([0, 0, 0,…,1, 1, 1 ,…,2, 2, 2,…])

The classes setosa, versicolor and virginica are denoted by 0, 1, and 2, respectively.

  1. Data Visualization

In this section, we use the package matplotlib to visualize data.

Detailed information about matplotlib can be found at matplotlib.org.

Package setup for visualization: import matplotlib.pyplot as plt

We use a subset of attributes in the Iris dataset for visualization. First, we select the attributes Petal length and Petal width as follows.

X = iris.data[:, 2:4] t = iris.target

We can now generate a scatter plot using the attribute values in X, and use the target outputs to distinguish the instances.

plt.scatter(X[:, 0], X[:, 1], c=t) plt.xlabel(‘Petal length’) plt.ylabel(‘Petal width’) plt.show()

You can generate the scatter plot for other pairs of attributes. For example, the attribute pair (Sepal length, Sepal width) can be specified as follows:

X = iris.data[:, :2]

Accordingly, labels for the two axes should also be changed:

plt.scatter(X[:, 0], X[:, 1], c=t) plt.xlabel(‘Sepal length’) plt.ylabel(‘Sepal width’) plt.show()